風電葉片直徑有多長?
風能是最具成本優勢的可再生能源,風能發電在近10年來已取得飛速發展。截至2016年5月,全球風電裝機容量已近4 270億MW(表1)。并據預測,2020年前,新增風電裝機能力將按25%的年增長率遞增;到2020年,風力發電量將占世界總發電量的11.81%。
為提高風力發電機的風能轉換效率,增大單機容量和減輕單位千瓦質量是關鍵。20世紀90年代初期,風電機組單機容量僅為500 kW,而如今,單機容量10 MW的海上風力發電機組都已產品化。
風電葉片直徑有多長?葉片直徑的增長過程
風電葉片是風電機組中有效捕獲風能的關鍵部件,葉片長度隨風電機組單機容量的提高而不斷增長。根據頂旋理論,為獲得更大的發電能力,風力發電機需安裝更大的葉片。
1990年,葉輪直徑(Rotor Diameter)為25 m;2010年,葉輪直徑已達120 m。2011年,Kaj Lindvig預測海上風機的葉輪直徑2015年將達135 m,2020年將達到160 m。但這一預測很快就被突破,美國超導公司(American Superconductor Corp.)2016年已投入市場銷售的10 MW海上風力發電機的葉輪直徑就已達190 m。但因葉片長度的問題,業界就是否需發展10 MW及以上能力的風力發電機存有爭議,但主流觀點是需要發展的。
西門子風電(Siemens Wind Power)公司首席技術官認為:面積與體積的關系的科學定律將最終限制葉輪直徑的不斷增長,但目前還未達到極限,制造10 MW風力發電機在技術上是可行的;且從運營效益上看,降低每兆瓦時的運營成本,必須提高風力發電機的容量。
葉片直徑的增長過程
葉輪直徑的增加對葉片的質量及抗拉強力提出了更輕、更高的要求。玻璃纖維復合材料(GFRP)是制造大型葉片的關鍵材料,其可彌補GFRP的性能不足。但長期以來,出于成本因素,CFRP在葉片制造中只被用于梁帽、葉根、葉尖和蒙皮等關鍵部位。近年,隨著碳纖維價格穩中有降,加之葉片長度進一步加長,CFRP的應用部位增加,用量也有較大提升。2014年,中材科技風電葉片股份有限公司成功研制出國內最長的6MW風機葉片,該葉片全長77.7 m、質量28t,其中主梁由5t的國產CFRP制成。如采用GFRP設計,則該葉片質量將約達36t。
責任編輯:小琴