欧美日操-欧美日韩91-欧美日韩99-欧美日韩ay在线观看-xxxx色-xxxx视频在线

阿里數(shù)據(jù)庫(kù)進(jìn)入全網(wǎng)秒級(jí)實(shí)時(shí)監(jiān)控時(shí)代

2018-01-10 17:08:18 AI前線  點(diǎn)擊量: 評(píng)論 (0)
隨著阿里巴巴數(shù)據(jù)庫(kù)規(guī)模的不斷擴(kuò)大,我們建設(shè)數(shù)據(jù)庫(kù)管控平臺(tái)也經(jīng)歷了很多階段,從腳本化、工具化、平臺(tái)化到目前的 DBPaaS,DBPaaS 在2017
隨著阿里巴巴數(shù)據(jù)庫(kù)規(guī)模的不斷擴(kuò)大,我們建設(shè)數(shù)據(jù)庫(kù)管控平臺(tái)也經(jīng)歷了很多階段,從腳本化、工具化、平臺(tái)化到目前的 DBPaaS,DBPaaS 在2017年雙 11 中, 首次全面覆蓋集團(tuán)、各子公司下的本地?cái)?shù)據(jù)庫(kù)、公有云、混合云等多種場(chǎng)景。2017年雙 11,數(shù)據(jù)庫(kù)已經(jīng)全面實(shí)現(xiàn)容器化部署,彈性使用離線資源、公有云資源支持大促。全面優(yōu)化的監(jiān)控采集鏈路,實(shí)現(xiàn)了全網(wǎng)所有數(shù)據(jù)庫(kù)實(shí)例的秒級(jí)采集、監(jiān)控、展現(xiàn)、診斷。每秒實(shí)時(shí)處理超過(guò) 1000 萬(wàn)項(xiàng)監(jiān)控指標(biāo),讓異常無(wú)所遁形。DBPaaS 也持續(xù)在數(shù)據(jù)庫(kù)管理的自動(dòng)化、規(guī)模化、數(shù)字化、智能化等方向進(jìn)行突破。

在這其中,關(guān)于數(shù)據(jù)庫(kù)監(jiān)控系統(tǒng)建設(shè)比較典型。

在業(yè)務(wù)平時(shí)運(yùn)行態(tài),線上系統(tǒng)出現(xiàn)故障,在數(shù)萬(wàn)數(shù)據(jù)庫(kù)中,如何發(fā)現(xiàn)異常、快速診斷亦是一件非常具有挑戰(zhàn)的事情。在雙十一全鏈路壓測(cè)中,系統(tǒng)吞吐量未達(dá)預(yù)期或業(yè)務(wù)出現(xiàn)了 RT 抖動(dòng),快速診斷定位數(shù)據(jù)庫(kù)問(wèn)題是一個(gè)現(xiàn)實(shí)課題。此外,對(duì)于復(fù)雜數(shù)據(jù)庫(kù)故障事后排查故障根源、現(xiàn)場(chǎng)還原、歷史事件追蹤也迫使我們建設(shè)一個(gè)覆蓋線上所有環(huán)境、數(shù)據(jù)庫(kù)實(shí)例、事件的監(jiān)控系統(tǒng),

做到:

1)覆蓋阿里全球子公司所有機(jī)房。

2)覆蓋阿里生態(tài)包含新零售、新金融、新制造、新技術(shù)、新能源所有業(yè)務(wù)。

3)覆蓋所有數(shù)據(jù)庫(kù)主機(jī)、操作系統(tǒng)、容器、數(shù)據(jù)庫(kù)、網(wǎng)絡(luò)。

4)所有性能指標(biāo)做到 1 秒級(jí)連續(xù)不間斷監(jiān)控。

5)全天候持續(xù)穩(wěn)定運(yùn)行。

DBPaaS 監(jiān)控雙 11 運(yùn)行概況

2017 年雙 11,DBPaaS 平臺(tái)秒級(jí)監(jiān)控系統(tǒng)每秒平均處理 1000 萬(wàn)項(xiàng)性能指標(biāo),峰值處理 1400 萬(wàn)項(xiàng)性能指標(biāo),為線上分布在中國(guó)、美國(guó)、歐洲、東南亞的、所有數(shù)據(jù)庫(kù)實(shí)例健康運(yùn)行保駕護(hù)航。做到了實(shí)時(shí)秒級(jí)監(jiān)控,也就是說(shuō),任何時(shí)候,DBA 同學(xué)可以看到任何數(shù)據(jù)庫(kù)實(shí)例一秒以前的所有性能趨勢(shì)。

DBPaaS 監(jiān)控系統(tǒng)僅使用 0.5% 的數(shù)據(jù)庫(kù)資源池的機(jī)器,支撐整個(gè)采集鏈路、計(jì)算鏈路、存儲(chǔ)、展現(xiàn)診斷系統(tǒng)。監(jiān)控系統(tǒng)完美記錄今年每一次全鏈路壓測(cè)每個(gè) RT 抖動(dòng)現(xiàn)場(chǎng),助力 DBA 快速診斷數(shù)據(jù)庫(kù)問(wèn)題,并為后續(xù)系統(tǒng)優(yōu)化提供建議。

在雙 11 大促保障期間,我們做到機(jī)器不擴(kuò)容、服務(wù)不降級(jí),讓 DBA 同學(xué)們喝茶度過(guò)雙 11。在日常業(yè)務(wù)運(yùn)行保障, 我們也具備 7*24 服務(wù)能力。

我們是如何做到的

實(shí)現(xiàn)一個(gè)支持?jǐn)?shù)萬(wàn)數(shù)據(jù)庫(kù)實(shí)例的實(shí)時(shí)秒級(jí)監(jiān)控系統(tǒng),要解決許多技術(shù)挑戰(zhàn)。都說(shuō)優(yōu)秀的架構(gòu)是演進(jìn)過(guò)來(lái),監(jiān)控系統(tǒng)的建設(shè)也隨著規(guī)模和復(fù)雜性增加不斷迭代,到 2017 年,監(jiān)控系統(tǒng)經(jīng)歷了四個(gè)階段改進(jìn)。

第一代監(jiān)控系統(tǒng)

第一代監(jiān)控系統(tǒng)架構(gòu)非常簡(jiǎn)單,采集 Agent 直接把性能數(shù)據(jù)寫(xiě)入數(shù)據(jù)庫(kù),監(jiān)控系統(tǒng)直接查詢(xún)數(shù)據(jù)庫(kù)即可。

隨著數(shù)據(jù)庫(kù)集群規(guī)模擴(kuò)大,簡(jiǎn)易架構(gòu)的缺點(diǎn)也非常明顯。

首先,單機(jī)數(shù)據(jù)庫(kù)容量擴(kuò)展性不足,隨著監(jiān)控的數(shù)據(jù)庫(kù)規(guī)模擴(kuò)大,日常性能指標(biāo)寫(xiě)入量非常大,數(shù)據(jù)庫(kù)容量捉襟見(jiàn)肘,長(zhǎng)時(shí)間積累的監(jiān)控歷史數(shù)據(jù)經(jīng)常觸發(fā)磁盤(pán)空間預(yù)警,我們經(jīng)常被迫刪除遠(yuǎn)期數(shù)據(jù)。

其次,監(jiān)控指標(biāo)的擴(kuò)展性不足。一開(kāi)始數(shù)據(jù)庫(kù)監(jiān)控項(xiàng)只有十幾項(xiàng),但是很快就發(fā)現(xiàn)不夠用。因?yàn)榻?jīng)常有人拿著 MySQL 的文檔說(shuō),我想看這個(gè),我想看那個(gè),能不能放到監(jiān)控系統(tǒng)里。性能指標(biāo)展現(xiàn)的前提是存儲(chǔ),在存儲(chǔ)層的擴(kuò)展性缺陷讓我們頭痛不已。對(duì)于這種功能需求,無(wú)論是寬表還是窄表,都存在明顯的缺陷。如果用寬表,每新增一批性能指標(biāo),就要執(zhí)行一次 DDL,雖然預(yù)定義擴(kuò)展字段可以緩解,但終究約束了產(chǎn)品想象空間。窄表在結(jié)構(gòu)上解決了任意個(gè)性能指標(biāo)的存儲(chǔ)問(wèn)題,但是它也帶來(lái)了寫(xiě)入數(shù)據(jù)量放大和存儲(chǔ)空間膨脹的弊病。最后,系統(tǒng)整體讀寫(xiě)能力也不高,而且不具備水平擴(kuò)展性。

以上所有原因催生了第二代監(jiān)控系統(tǒng)的誕生。

第二代監(jiān)控系統(tǒng)

第二代監(jiān)控系統(tǒng)引入了 DataHub 模塊和分布式文檔數(shù)據(jù)庫(kù)。數(shù)據(jù)鏈路變成由采集 Agent 到 DataHub 到分布式文檔數(shù)據(jù)庫(kù),監(jiān)控系統(tǒng)從分布式文檔。

采集 Agent 專(zhuān)注于性能數(shù)據(jù)采集邏輯,構(gòu)造統(tǒng)一數(shù)據(jù)格式,調(diào)用 DataHub 接口把數(shù)據(jù)傳輸?shù)?DataHub,采集 Agent 不需要關(guān)心性能數(shù)據(jù)存在哪里。DataHub 作為承上啟下的節(jié)點(diǎn),實(shí)現(xiàn)了采集與存儲(chǔ)的解耦。第一,它對(duì)采集 Agent 屏蔽了數(shù)據(jù)存儲(chǔ)細(xì)節(jié),僅暴露最簡(jiǎn)單數(shù)據(jù)投遞接口;第二,DataHub 收到根據(jù)存儲(chǔ)引擎特性使用最優(yōu)寫(xiě)入模型,比如使用批量寫(xiě)入、壓縮等方式;第三,使用 LVS、LSB 技術(shù)可以實(shí)現(xiàn) DataHub 水平擴(kuò)展。分布式文檔數(shù)據(jù)庫(kù)部分了解決擴(kuò)展性問(wèn)題,水平擴(kuò)容用于解決存儲(chǔ)容量不足的問(wèn)題,schema free 的特性可以性能指標(biāo)擴(kuò)展性問(wèn)題。

隨著監(jiān)控系統(tǒng)持續(xù)運(yùn)行,數(shù)據(jù)庫(kù)實(shí)例規(guī)模擴(kuò)大,性能指標(biāo)持續(xù)增加,監(jiān)控系統(tǒng)用戶擴(kuò)大,又遇到新的問(wèn)題。第一,DBA 同學(xué)常常需要查看數(shù)據(jù)庫(kù)跨越數(shù)月的性能趨勢(shì),以預(yù)估數(shù)據(jù)庫(kù)流量未來(lái)趨勢(shì),這時(shí)系統(tǒng)查詢(xún)速度基本不可用。第二,存儲(chǔ)長(zhǎng)達(dá)一年的全量性能數(shù)據(jù),成本變得越來(lái)越不可承受,每年雙 11 壓測(cè)時(shí),DBA 同學(xué)總會(huì)問(wèn)起去年雙 11 的性能趨勢(shì)。第三,DataHub 存在丟失采集數(shù)據(jù)的隱患,由于采集原始數(shù)據(jù)是先 buffer 在 DataHub 內(nèi)存中,只要進(jìn)程重啟,內(nèi)存中的采集數(shù)據(jù)就會(huì)丟失。

第三代監(jiān)控系統(tǒng)

關(guān)于查詢(xún)速度慢的問(wèn)題,文檔型數(shù)據(jù)庫(kù)和關(guān)系型數(shù)據(jù)庫(kù)一樣,都是面向行的數(shù)據(jù)庫(kù),即讀寫(xiě)的基本數(shù)據(jù),每一秒的性能數(shù)據(jù)存儲(chǔ)一行,一行 N 個(gè)性能指標(biāo),性能指標(biāo)被存儲(chǔ)在以時(shí)間為 key 的一個(gè)表格中。雖然同一時(shí)刻的所有性能指標(biāo)被存在同一行,但是它們的關(guān)系卻沒(méi)那么緊密。因?yàn)榈湫偷谋O(jiān)控診斷需求是查同一個(gè)或幾個(gè)指標(biāo)在一段時(shí)間的變化趨勢(shì),而不是查同一時(shí)刻的指標(biāo)(瞬時(shí)值),比如這樣的:

數(shù)據(jù)庫(kù)存儲(chǔ)引擎為了查出某個(gè)指標(biāo)的性能趨勢(shì),卻要掃描所有指標(biāo)的數(shù)據(jù),CPU 和內(nèi)存都開(kāi)銷(xiāo)巨大,顯而易見(jiàn),這些都是在浪費(fèi)。雖然 Column Family 技術(shù)可以在一定程度上緩解上面說(shuō)的問(wèn)題,但是如何設(shè)定 Column Family 是個(gè)巨大挑戰(zhàn),難道要存儲(chǔ)層的策略要和監(jiān)控診斷層的需求耦合嗎?這看起來(lái)不是好辦法。

所以,我們把目光投向列式數(shù)據(jù)庫(kù),監(jiān)控性能指標(biāo)讀寫(xiě)特征非常合適列式數(shù)據(jù)庫(kù),以 OpenTSDB 為代表的時(shí)序數(shù)據(jù)庫(kù),進(jìn)入我們考察視野。OpenTSDB 用時(shí)間線來(lái)描述每一個(gè)帶有時(shí)間序列的特定對(duì)象,時(shí)間線的讀寫(xiě)都是獨(dú)立的。毫無(wú)疑問(wèn),OpenTSDB 成為第三代監(jiān)控系統(tǒng)架構(gòu)的一部分。

為了消除 DataHub 穩(wěn)定性隱患,引入分布式消息隊(duì)列,起到削峰填谷作用,即使 DataHub 全線崩潰,也可以采用重新消費(fèi)消息的方式解決。分布式消息隊(duì)列,可以選擇 Kafka 或 RocketMQ,這些分布式消息隊(duì)列已經(jīng)具備了高可用能力。

第三代架構(gòu)相比過(guò)去有巨大的進(jìn)步,在 2016 年雙 11 實(shí)現(xiàn)了全網(wǎng)數(shù)據(jù)庫(kù) 10 秒級(jí)監(jiān)控,核心數(shù)據(jù)庫(kù)集群 1 秒級(jí)監(jiān)控。

隨著阿里生態(tài)擴(kuò)大,全球化深入,各類(lèi)全資子公司業(yè)務(wù)全面融合到阿里體系,除了中國(guó)大陸,還有美國(guó)、歐洲、俄羅斯、東南亞的業(yè)務(wù)。同時(shí)在阿里數(shù)據(jù)庫(kù)領(lǐng)域的新技術(shù)應(yīng)用層出不窮,單元化部署已經(jīng)成為常態(tài),容器化調(diào)度正在覆蓋全網(wǎng),存儲(chǔ)計(jì)算分離正在不斷推進(jìn),同一個(gè)業(yè)務(wù)數(shù)據(jù)庫(kù)集群,在不同單元的部署策略可能也不同。與之對(duì)應(yīng)的,DBA 團(tuán)隊(duì)的規(guī)模并沒(méi)有相應(yīng)擴(kuò)大,一個(gè) DBA 同學(xué)支持多個(gè)子公司業(yè)務(wù)是常態(tài),有的 DBA 還要兼任新技術(shù)推廣等工作。在數(shù)據(jù)庫(kù)性能診斷這個(gè)環(huán)節(jié),必須為 DBA 爭(zhēng)效率,為 DBA 提供從宏觀到微觀到診斷路徑顯得越來(lái)越迫切:從大盤(pán)到集群、到單元、到實(shí)例、到主機(jī)、容器等一站式服務(wù)。

在這樣的診斷需求下,第三代監(jiān)控架構(gòu)有點(diǎn)力不從心了,主要表現(xiàn)在查詢(xún):

1)高維度的性能診斷查詢(xún)速度慢,以集群 QPS 為例,由于 OpenTSDB 里存儲(chǔ)的每一個(gè)實(shí)例的 QPS 數(shù)據(jù),當(dāng)需要查詢(xún)集群維度 QPS 就需要對(duì)掃描集群每一個(gè)實(shí)例的 QPS,再 group by 時(shí)間戳 sum 所有實(shí)例 QPS。這需要掃描大量原始數(shù)據(jù)。

2)OpenTSDB 無(wú)法支持復(fù)雜的監(jiān)控需求,比如查看集群平均 RT 趨勢(shì),集群平均 RT 并不是 avg(所有實(shí)例的 RT),而是 sum(執(zhí)行時(shí)間)/sum(執(zhí)行次數(shù))。為了實(shí)現(xiàn)目標(biāo)只能查出 2 條時(shí)間線數(shù)據(jù),在監(jiān)控系統(tǒng)內(nèi)部計(jì)算完后再展現(xiàn)在頁(yè)面中,用戶響應(yīng)時(shí)間太長(zhǎng)。

3)長(zhǎng)時(shí)間跨度的性能診斷速度慢,比如 1 個(gè)月的性能趨勢(shì),需要掃描原始的秒級(jí) 2592000 個(gè)數(shù)據(jù)點(diǎn)到瀏覽器中展現(xiàn),考慮到瀏覽器展現(xiàn)性能,實(shí)際并不能也沒(méi)必要展現(xiàn)原始秒級(jí)數(shù)據(jù)。展示 15 分鐘時(shí)間精度的數(shù)據(jù)就夠了。

上述提到的預(yù)計(jì)算問(wèn)題,OpenTSDB 也意識(shí)到,其 2.4 版本開(kāi)始,具備了簡(jiǎn)陋預(yù)計(jì)算能力,無(wú)論從功能靈活性還是系統(tǒng)穩(wěn)定性、性能,OpenTSDB 都無(wú)法滿足 DBPaaS 秒級(jí)監(jiān)控需求。

DBPaaS 新一代架構(gòu)

新一代架構(gòu),我們把 OpenTSDB 升級(jí)為更強(qiáng)勁的 HiTSDB,同時(shí)基于流式計(jì)算開(kāi)發(fā)的實(shí)時(shí)預(yù)聚合引擎代替簡(jiǎn)單的 DataHub,讓秒級(jí)監(jiān)控飛。

在職責(zé)界定上,監(jiān)控診斷需求的復(fù)雜性留給實(shí)時(shí)預(yù)聚合引擎來(lái)解決,對(duì)時(shí)序數(shù)據(jù)庫(kù)的查詢(xún)需求都限定在一條時(shí)間線內(nèi)。這要求時(shí)序數(shù)據(jù)庫(kù)必須把單一時(shí)間線性能做到極致,由兄弟團(tuán)隊(duì)開(kāi)發(fā)的阿里巴巴高性能序數(shù)據(jù)庫(kù) HiTSDB 做到了極致壓縮和極致讀寫(xiě)能力,利用時(shí)序數(shù)據(jù)等距時(shí)間戳和數(shù)值小幅變化的特征,它做了大量壓縮。同時(shí)它全面兼容 OpenTSDB 協(xié)議,已經(jīng)在阿里云公測(cè)。

新架構(gòu)讓我們放開(kāi)雙手專(zhuān)注思考監(jiān)控與診斷需求,不再受存儲(chǔ)層的束縛。第一,為了高維度性能趨勢(shì)查詢(xún)性能,預(yù)聚合引擎做到了預(yù)先按業(yè)務(wù)數(shù)據(jù)庫(kù)集群、單元、實(shí)例把性能指標(biāo)計(jì)算好,寫(xiě)入 HiTSDB。第二,建立性能指標(biāo)聚合計(jì)算函數(shù)庫(kù),所有性能指標(biāo)的聚合計(jì)算公式都是可以配置的,實(shí)現(xiàn)了自由的設(shè)定監(jiān)控指標(biāo)。第三,事先降時(shí)間精度,分為 6 個(gè)精度:1 秒、5 秒、15 秒、1 分鐘、5 分鐘、15 分鐘。不同時(shí)間精度的性能數(shù)據(jù),才有不同的壓縮策略。

實(shí)時(shí)計(jì)算引擎

實(shí)時(shí)計(jì)算引擎實(shí)現(xiàn)了實(shí)例、單元、集群三個(gè)維度逐級(jí)聚合,每一級(jí)聚合 Bolt 各自寫(xiě)入 HiTSDB。流式計(jì)算平臺(tái)的選擇是自由,目前我們的程序運(yùn)行在 JStorm 計(jì)算平臺(tái)上,JStorm 讓我們具備天生的高可用能力。

實(shí)時(shí)計(jì)算引擎性能

實(shí)時(shí)計(jì)算引擎使用了數(shù)據(jù)庫(kù)總機(jī)器規(guī)模 0.1% 的資源, 實(shí)現(xiàn)了全網(wǎng)秒級(jí)監(jiān)控?cái)?shù)據(jù)的計(jì)算,平均每秒處理超過(guò) 1000 萬(wàn)項(xiàng)性能指標(biāo),平均寫(xiě)入 TPS 600 萬(wàn),峰值 TPS 1400 萬(wàn),下圖是雙 11 期間 HiTSDB TPS 趨勢(shì)曲線。

關(guān)鍵優(yōu)化點(diǎn)

用這么少的計(jì)算資源就實(shí)現(xiàn)了這么高吞吐量,必然用上了許多黑科技。

1)在預(yù)計(jì)算中,我們使用增量迭代計(jì)算,無(wú)論是 5 秒精度的數(shù)據(jù),還是 15 分鐘精度數(shù)據(jù),我們不需要等時(shí)間窗口內(nèi)所有的性能指標(biāo)收集滿了,再開(kāi)始計(jì)算,而是來(lái)多少性能數(shù)據(jù),就算多少,僅保留中間結(jié)果,極大的節(jié)省內(nèi)存。這項(xiàng)優(yōu)化,相比常規(guī)計(jì)算方法至少節(jié)省 95% 內(nèi)存。

2)采集端,針對(duì)性能數(shù)據(jù)報(bào)文進(jìn)行合并,把相似和相鄰的報(bào)文合并在一起上報(bào)到 kafka,這樣可以讓 JStorm 程序批量處理數(shù)據(jù)。

3)利用流式計(jì)算的特性實(shí)現(xiàn)數(shù)據(jù)局部性,同一個(gè)集群?jiǎn)卧膶?shí)例采集到的數(shù)據(jù)在同一個(gè) kafka 分區(qū)。這樣可以減少計(jì)算過(guò)程的網(wǎng)絡(luò)傳輸及 java 序列化 / 反序列化。這一項(xiàng)可以減少 50% 的網(wǎng)絡(luò)傳輸。有興趣的朋友可以想想為什么不能按實(shí)例分區(qū)或按集群分區(qū),會(huì)有什么問(wèn)題呢?

4)使用 JStorm 自定義調(diào)度特性,讓具有數(shù)據(jù)相關(guān)性的計(jì)算 Bolt 調(diào)度在同一個(gè) JVM 中,這個(gè)是為了配合上面第二步,實(shí)現(xiàn)數(shù)據(jù)流轉(zhuǎn)盡量發(fā)生在同一個(gè) JVM 里。

5)對(duì)于不得不發(fā)生的 Map-Reduce 數(shù)據(jù)傳輸,盡量使用批量傳輸,并對(duì)傳輸?shù)臄?shù)據(jù)結(jié)構(gòu)進(jìn)行復(fù)用、裁剪,少傳輸重復(fù)數(shù)據(jù),減少序列化、反序列化壓力。

未來(lái)展望

阿里 DBPaaS 全網(wǎng)秒級(jí)監(jiān)控讓數(shù)據(jù)庫(kù)管控實(shí)現(xiàn)了數(shù)字化,經(jīng)過(guò)這一年,我們積累了許多有價(jià)值的結(jié)構(gòu)化數(shù)據(jù)。隨著大數(shù)據(jù)技術(shù)、機(jī)器學(xué)習(xí)技術(shù)的發(fā)展,為數(shù)據(jù)庫(kù)管控進(jìn)入智能化提供了可能性。

1)智能診斷,基于現(xiàn)有全方位無(wú)死角的監(jiān)控,結(jié)合事件追蹤,智能定位問(wèn)題。

2)調(diào)度優(yōu)化,通過(guò)分析每個(gè)數(shù)據(jù)庫(kù)實(shí)例的畫(huà)像特征,讓資源互補(bǔ)性的幾個(gè)數(shù)據(jù)庫(kù)實(shí)例調(diào)度在一起,最終節(jié)省成本。

3)預(yù)算估計(jì),通過(guò)分析數(shù)據(jù)庫(kù)歷史運(yùn)行狀況, 在每次大促前,根據(jù)業(yè)務(wù)交易量目標(biāo),確定每一個(gè)數(shù)據(jù)庫(kù)集群容量需求,進(jìn)而為自動(dòng)化擴(kuò)容提供依據(jù)。

大云網(wǎng)官方微信售電那點(diǎn)事兒

責(zé)任編輯:售電衡衡

免責(zé)聲明:本文僅代表作者個(gè)人觀點(diǎn),與本站無(wú)關(guān)。其原創(chuàng)性以及文中陳述文字和內(nèi)容未經(jīng)本站證實(shí),對(duì)本文以及其中全部或者部分內(nèi)容、文字的真實(shí)性、完整性、及時(shí)性本站不作任何保證或承諾,請(qǐng)讀者僅作參考,并請(qǐng)自行核實(shí)相關(guān)內(nèi)容。
我要收藏
個(gè)贊
?
主站蜘蛛池模板: 亚洲国产精品美女| 四虎影视永久免费观看地址| 亚洲18卡通动漫在线播放| 人人曰人人| 亚洲精品视频久久久| 欧美性色xo影院69| 日本美女黄色一级片| 色婷婷一区二区三区四区成人网| 四虎久久影院| 亚洲国产高清一区二区三区| 一级毛片60分钟| 亚洲国产高清在线精品一区| 日韩成人一区ftp在线播放| 色综久久| 四虎网址在线| 午夜国产小视频| 三级中文有码中文字幕| 一级黄免费| 亚洲国产中文字幕在线观看| 人人澡人人爽人人精品| 思思久久99热只有频精品66| 青草国产| 欧美一级色| 四虎私人影院| 亚洲尤物| 日产国产精品久久久久久| 色黄网站aaaaaa级毛片| 四虎在线最新地址4hu| 日韩免费高清一级毛片| 一级毛片国产真人永久在线| 天堂网日本| 亚洲国产美女在线观看| 欧美日韩在线网站| 亚洲人成网站999久久久综合| 偷窥 国产在线视频| 亚洲一区欧美| 天天亚洲综合| 欧美一级在线全免费| 欧美精品xxxxbbbb| 午夜欧美精品| 三级观看|