試析環保節能地源熱泵技術應用分析
論文關鍵詞:地源熱泵 節能 環保 可持續發展 研究
論文摘要:闡述了地源熱泵技術的工作原理、分類及其應用意義,分析了地源熱泵的特點及經濟效益,介紹了地源熱泵的發展歷史以及國內對地源熱泵的研究現狀,提出地源熱泵在我國節能、環保、可持續發展中具有廣闊的前景。
1引言
當今社會由于經濟的快速發展和人口急劇增長,世界性的生態破壞、環境污染和資源匿乏已經達到自然生態環境所能承受的極限;能源、資源、環境的制約,已成為阻礙各國未來經濟發展的瓶頸。為緩解巨大的能源與環境壓力,近年來節能減排已成為全社會發展的新主題。人們積極采取各種應對措施,將可再生能源列人國家能源發展的優先領域,使能源結構體系從以化石燃料為主體的能源時代過渡到可持續發展的能源時代。地源熱泵技術的開發和應用,就是人們選擇的應對措施之一。
地源熱泵技術是一種利用地下淺層地熱資源,實現向建筑物提供采暖、制冷和生活熱水的高效節能環保型空調技術。地源能是一種潔凈的可再生能源,它具有熱流密度大、容易收集和輸送、參數穩定(流量、溫度)、使用方便、不受地域限制等優點。
熱泵的理論基礎源于卡諾循環,與制冷機相同,按照逆循環工作,即通過輸入少量的高品位能源(如電能),以地源能作為熱泵夏季制冷的冷卻源、冬季采暖供熱的低溫熱源。在冬季,把地能中的熱量“取”出來,提高溫度后,供給室內采暖,同時儲存冷量,以備夏用;夏季通過熱泵對室內進行降溫,同時把室內的熱量釋放到地下,進行熱量儲存,以備冬用,大地在整個循環中起到了蓄熱器的作用。地源熱泵系統中70%能量是從大地中獲得的可再生能源。以其作為主要能源供給,既節約大量能源,又有效地減少, :及粉塵的排放。這項技術與傳統空調系統相比,優勢在于它實現了節能與環保的統一。
2地源熱泵系統工作環境及原理
2.1地源熱泵的工作環境
距地下30~300 m之間的地層是一個恒溫帶,其溫度源于地球表面太陽熱輻射和地核熱傳導的綜合作用,被人們稱為綜合平衡層又稱地下淺層。溫度一年四季相對穩定,冬季比環境空氣溫度高,夏季比環境空氣溫度低。地源熱泵系統就是利用這一恒溫帶中的土壤、卵石、巖石中的地下含水層以及深層地表水作熱泵的源與匯,向建筑物冬季供熱、夏季供冷。
2.2地源熱泵的結構和工作原理
2.2.1結構
地源熱泵系統主要由室外地源換熱系統、熱泵機組和室內空調末端系統3部分組成。熱泵機組為主動力部分,由制冷壓縮機、蒸發器、冷凝器、膨脹閥等組成回路。其中壓縮機是熱泵系統的心臟,通過電能驅動壓縮機,不斷地壓縮和輸送循環工質從低溫低壓處到高溫高壓處,且周而復始地進行循環;蒸發器是輸出冷量的設備,它的作用是使經節流閥流人的制冷劑液體蒸發,以吸收被冷卻物體的熱量,達到制冷的目的;冷凝器是輸出熱量的設備,將從蒸發器中吸收的熱量及壓縮機消耗功所轉化的熱量,在冷凝器中被冷卻介質帶走,達到制熱的目的;膨脹閥或稱節流閥對循環工質起到節流降壓作用,并調節進人蒸發器的循環工質流量。
2.2.2供熱原理
圖1為地源熱泵供熱系統原理。其工作原理如下:首先在制冷回路內充注制冷劑。壓縮機通入三相交流電高速旋轉,將低溫低壓制冷劑氣體吸入壓縮機。經壓縮后變成高壓高溫氣體,該氣體經冷凝器被冷卻水冷卻,又變成中壓中溫的制冷劑液體,該液體經過膨脹閥節流減壓后送人蒸發器。由于蒸發器連接在壓縮機的吸氣口上,壓縮機不停地吸入蒸發器的制冷劑氣體,使得進人蒸發器的大量制冷劑壓力減低,制冷劑進一步大量蒸發。
由于蒸發器另一側與室外地源換熱系統的地下潛水泵連接,所以當地下水大量流過蒸發器時,被蒸發的制冷劑帶走地下水中的大量熱量。這些低溫熱量通過被蒸發的制冷劑吸收變成了制冷劑熱量,又被源源不斷地吸人壓縮機。經壓縮機壓縮之后,變成為80~90℃的高溫氣體,這些高溫氣體在通過冷凝器冷卻的同時,把大量的熱量傳給了冷凝器另一側,即室內空調末端系統,也稱采暖系統。制冷劑氣體被冷卻的過程,也可以看做是將高溫熱量傳遞給冷卻系統的過程,或者是對采暖系統的加熱過程,采暖系統水溫一般為50~60℃通過室內空調末端系統的風機盤管或暖氣片向房間供熱。
從能量轉換角度來講,熱泵機組壓縮機將電能變為機械能,再將機械能變成為熱能。壓縮機輸出的總熱能為壓縮機電功率與壓縮機吸收來自地下的熱能之和,而地下熱能遠遠大于壓縮機的電功率。一般從地下水中提取的熱能是壓縮機電功率產生熱能的4~5倍,因此熱泵機組的能效比約為4.5,而電鍋爐的能效比為0.9~0.98。
2.2.3制冷原理
圖2是地源熱泵制冷系統原理。熱泵的制冷工作原理與圖1所示相同,制冷劑回路保持不變。但通過轉換閥門將室內空調末端系統(即制冷回路)連接在蒸發器的吸熱端;室外地源換熱系統連接在冷凝器的放熱端。熱泵機組制冷時,壓縮機將吸熱端吸人的低溫低壓制冷劑氣體經壓縮后變成高溫高壓制冷劑氣體排人冷凝器后,被接在冷凝器側地下水系統冷卻變成中溫中壓制冷劑液體。制冷劑液體通過膨脹閥節流減壓后,進人蒸發器進一步膨脹、蒸發、吸熱,使制冷劑由液體變成氣體又被壓縮機吸熱端吸人。再經壓縮機壓縮后,又變成高溫高壓制冷劑氣體排人冷凝器,同時也將蒸發器側的室內空調末端系統(即空調房間)的熱量源源不斷地經放熱端的冷凝器排人地下水中。吸收了水中熱量的制冷劑液體蒸發后又由液態變成氣態被壓縮機吸人、壓縮、放熱。周而復始、循環往復完成了制冷全過程。
將地源熱泵系統制冷時產生的廢熱回收,可制成50--55℃生活用熱水,節省用于制熱水耗用的燃油或煤,對空氣無污染,達到制熱水不耗能的節能效果;同時由于制出的冷凍水可補充到回水系統中,以降低回水系統的回水溫度,從而提高了制冷效率,降低了制冷系統的耗電量。
3地源熱泵的分類
按照冷熱源的不同,可將地源熱泵系統分為以利用土壤作為冷熱源的土壤源熱泵、以利用地下水為冷熱源的地下水熱泵系統和以利用地表水為冷熱源的地表水熱泵系統3類。
3.1土壤源熱泵
土壤源熱泵是利用地下巖土層中熱量進行閉路循環的熱泵系統。熱泵的換熱器埋于地下,與大地進行冷熱交換。它通過循環液(水或以水為主要成分的防凍液)在密閉地下埋管中的流動,實現系統與大地之間的傳熱。冬季供熱時,流體從地下收集熱量,再通過系統把熱量帶到室內。夏季制冷時系統逆向運行,即從室內帶走熱量,再通過系統將熱量送到地下巖土層中。
地下熱交換器的布置形式主要分為垂直埋管、水平埋管和蛇行埋管3類。
垂直埋管換熱器通常采用的是U型方式,按其埋管深度可分為淺層(小于30 m),中層(30~100 m)和深層(大于100 m)3種。垂直埋管換熱器熱泵系統占地面積小、需要的管材少、泵耗能低,單位管長換熱量高于水平埋管,但造價相對要高。水平埋管換熱器有單管和多管2種形式,一般埋設深度為1.5-3.0 m。水平埋管換熱器造價相對低,目前廣泛使用。但需要較大場地、運行性能不穩定、泵耗能高、系統效率較低。蛇行埋管換熱器比較適用于場地有限的情況。雖然挖掘量只有單管水平埋管換熱器的20%~30%,但用管量會明顯增加。這種方式的特點類似水平埋管換熱器。
3.2地下水源熱泵
地下水源熱泵系統的熱源是從水井或廢棄的礦井中抽取的地下水。最常用的系統形式是采用一側連接地下水,一側連接熱泵機組(板式換熱器)。早期的地下水系統采用單井系統,即將地下水經過板式換熱器換熱后直接排放。其缺點是既浪費地下水資源,又容易造成地層塌陷,甚至引起地質災害。后來產生了雙井系統,一個井抽水,一個井回灌。地下水熱泵使用最多的是深為50 m以內的淺井,其優點是造價比土壤源熱泵低、水井與水井之間很緊湊、占地面積小、技術比較成熟。缺點是可供的地下水有限、水處理要求嚴格、抽取的地下水全部回灌并且不能受到污染。現在更多采用的是1抽2回或2抽3~4回技術,這種技術目前沈陽等城市采用較多。
3.3地表水源熱泵
地表水源熱泵系統的熱源是池塘、湖泊或河溪中的地表水。地表水源熱泵主要分為閉路系統和開路系統。在寒冷地區,開路系統并不適用,只能采用閉路系統。地表水源熱泵具有造價相對低廉、泵耗能低、維修方便以及運行費用少等優點。但這種地表水源熱泵系統也受到自然條件的限制。在公用的河流中、管道或水中的其他設備容易受到損害。如果河流、湖泊過小或過淺,水的溫度會隨氣候發生較大的變化,容易產生效率降低、制冷或供熱能力降低的后果。這種技術沿海城市采用得較多。
4地源熱泵系統的優勢及經濟效益
4.1充分利用自然資源實現高效節能
太陽能是取之不盡的可再生綠色能源,地表淺層相當于一個巨大的太陽能集熱器,它收集了47%的太陽能,比人類每年利用能量的500倍還多。地源熱泵在冬季就是利用這種儲存于地表淺層的無限的能源作為熱源;在夏季則以地表淺層恒定的地能溫度作冷源,只需小功率的壓縮機就可實現能量轉換的空調系統。調研結果表明,使用地源熱泵技術比風冷熱泵節能40%,比電采暖節能70%,比燃氣爐效率提高48%,所需制冷劑比一般空調減少50%,是真正意義上的高效節能。
4.2具有極大的環境效益
傳統的供暖、空調方式分別解決冬季供暖和夏季制冷。其系統投資大、占地多,且對環境的影響很嚴重。大氣是人類賴以生存的最基本環境要素之一。然而,由于冬季采用煤炭、燃油和天然氣等作為燃料,燃燒產生的大量污染物,包括大量的, , 等氣體造成的大氣污染,嚴重破壞著大氣環境,降低了人們的生活質量。夏季使用的空調系統同樣存在著:排放,作為重要的溫室氣體是造成全球性氣候變化的主要因素之一.
將大量廢熱排人大氣,產生了熱島效應,同時還產生令人難以忍受的噪音,使得外界空間環境條件更加惡化。而地源熱泵則利用大地的蓄熱能力,把夏季多余的熱能排人大地留作冬季取用,把冬季多余的冷能留作夏季取用,源頭上根除了空調系統對城市熱島的效應。地源熱泵的污染物排放很低,系統所使用的制冷劑在工廠里注人并被完全密封,使用過程中絕無泄漏,用戶任何時候均不必添補制冷劑,因而減少了對臭氧層的破壞。
熱泵系統可以建造在居民區內,在冬季供暖時省去了鍋爐和鍋爐房,沒有燃燒,沒有排煙;也沒有廢棄物,不需要堆放燃料、廢物的場地,不用遠距離輸送熱量,極大限度地改善其他空調方式的及顆粒物等污染物的排放量;供冷時省去了冷卻塔,避免了冷卻塔噪音及霉菌污染。地源熱泵所使用的地下水可全部回灌,不會對水質產生污染;地源熱泵系統不直接消耗煤或燃油、天然氣等礦物燃料,從而達到了綠色環保的要求。
4.3運行穩定可靠且使用壽命長
傳統的空調系統不論是水冷還是風冷,換熱環境均為大氣,由于它的換熱器必須置于暴露的空氣中,故不可避免地受到環境條件變化的影響,降低換熱效率和使用壽命,并且影響了建筑物的外觀;而地源熱泵以土壤作為熱源的主要優點在于土壤溫度的相對穩定,基本不受外界環境的影響;埋管熱交換器不需要除霜,減少了結霜和除霜的能耗;熱泵系統設計簡單,運動部件比常規系統少,且安裝在室內,自動控制程度高,可無人值守;系統安全無燃燒設備,不存在爆炸、燃燒的隱患;由于系統不暴露在風雨中,因而維護簡便,機組使用壽命均在20 a以上,地埋管換熱器壽命可達40~50a;地源熱泵系統的供冷、供熱平穩,降低了停、開機的頻率和空氣過熱和過冷的峰值;把地源熱泵換熱器埋于地下,也不會破壞建筑物的外觀。
4.4經濟效益分析
地源熱泵系統的經濟性是由多方面來確定的。不同地區、不同地質條件、不同能源結構及價格等都將直接影響到其經濟性。以地源熱泵系統與其他能源方式的投資進行比較(以北方綜合功能大廈為例),結果見表1。
以北京100的家庭為例,冬季采暖125d總耗熱量為:100x 125dx24 hx3 600x0.05 kW= 5 400萬kJ,為獲得這么多熱量,選用不同的采暖方式,耗用的燃料、燃燒效率、能源成本均有不同。
統計可知,燃煤供暖最經濟,但是由于北京地區已經限制燃煤使用,綜合比較,地源熱泵系統為最佳選擇。
僅以燃油鍋爐與地源熱泵提供同樣供熱量為例,對地源熱泵的環保特性分析比較,假設地源熱泵的電力來源于燃油電廠。供熱量為5 400 GJ的情況下,燃油電廠鍋爐所需的燃油熱量為4 050 GJ;而如果直接使用燃油鍋爐,其熱效率為80%,則需燃油熱量為6 750 GJ。這兩種供熱情況排放對比見表2。
從表2看出,利用地源熱泵, , 和:的排放量分別減少了69% , 93%和73%,因此其環保優勢十分明顯。
1套系統可以替換原來的鍋爐加空調加生活用熱水的3套系統;雖然初投資比常規燃煤鍋爐房供暖系統高出1~3倍,比熱電聯產集中供熱系統高出34%~50%。但根據國內外的經驗,由于地源熱泵運行費用低,增加的初投資可在3~7 a內收回,地源熱泵系統在整個服務周期內的平均費用將低于傳統的空調系統。初裝費用確實比傳統系統要高一些,主要是鋪設地埋管換熱器,費用貴在設計和安裝上,而每年省下的能源費用支出,會很快抵消高出的系統安裝費用,隨著時間的推移,從能源消費的節省上可以很快收回投資。同時,系統近于免維護和維修,可節省大量開支。作為清潔能源之一,地源熱泵也一直受到國家的政策支持。北京市的政策規定,北京市內建設的各類項目,供熱制冷系統選用熱泵系統的,將得到北京市固定資產投資中安排一次性補助,補助標準為50元/。
沈陽地區地下含水層透水性強,地面以下20 m之后基本為恒溫12℃。自然地理及水文地質條件適合地源熱泵技術的推廣應用。由于地下含水層多為砂礫結構,透水性強,可保證在不影響和破壞地下含水層的前提下常壓完全回灌。據統計,沈陽每年冬天有1.8億的供熱面積,所以發展熱泵的空間廣闊。到目前為止,沈陽已有地源熱泵面積超過3 000萬。根據遼寧省政府辦公廳要求:凡具備應用地源熱泵等可再生能源技術條件的新建、改建、擴建的建設項目,今后都必須采用“地熱”供熱制冷。機關辦公場所、賓館、商場、寫字樓等耗能大戶,應優先選用地源熱泵。預計到2010年,沈陽市可實現地源熱泵技術應用面積6 500萬,占全市總供暖面積的30%左右。屆時,每個采暖期節約標準煤將達126.55萬t,減少排放2.5萬t、煙塵1.9萬t。
5結語
在我國全面建設資源節約型、環境友好型社會的進程中,地源熱泵這一集節能、環保為一體的新技術,將越來越受到人們的重視與青睞。相信在不遠的將來,經過國內工程技術人員的不懈努力并借鑒國外的成功經驗,我國的地源熱泵應用將得到進一步的推廣和發展,它將為我國的可持續發展帶來新的契機。
責任編輯:電力交易小郭
-
現貨模式下谷電用戶價值再評估
2020-10-10電力現貨市場,電力交易,電力用戶 -
PPT | 高校綜合能源服務有哪些解決方案?
2020-10-09綜合能源服務,清潔供熱,多能互補 -
深度文章 | “十三五”以來電力消費增長原因分析及中長期展望
2020-09-27電力需求,用電量,全社會用電量
-
PPT | 高校綜合能源服務有哪些解決方案?
2020-10-09綜合能源服務,清潔供熱,多能互補 -
深度文章 | “十三五”以來電力消費增長原因分析及中長期展望
2020-09-27電力需求,用電量,全社會用電量 -
我國電力改革涉及的電價問題
-
貴州職稱論文發表選擇泛亞,論文發表有保障
2019-02-20貴州職稱論文發表 -
《電力設備管理》雜志首屆全國電力工業 特約專家征文
2019-01-05電力設備管理雜志 -
國內首座蜂窩型集束煤倉管理創新與實踐
-
人力資源和社會保障部:電線電纜制造工國家職業技能標準
-
人力資源和社會保障部:變壓器互感器制造工國家職業技能標準
-
《低壓微電網并網一體化裝置技術規范》T/CEC 150
2019-01-02低壓微電網技術規范
-
現貨模式下谷電用戶價值再評估
2020-10-10電力現貨市場,電力交易,電力用戶 -
建議收藏 | 中國電價全景圖
2020-09-16電價,全景圖,電力 -
一張圖讀懂我國銷售電價附加
2020-03-05銷售電價附加
-
電氣工程學科排行榜發布!華北電力大學排名第二
-
國家電網61家單位招聘畢業生
2019-03-12國家電網招聘畢業生 -
《電力設備管理》雜志讀者俱樂部會員招募
2018-10-16電力設備管理雜志