壓縮空氣儲能技術研發現狀及應用前景
儲能技術是解決可再生能源大規模接入、提高常規電力系統和區域能源系統效率、安全性和經濟性的迫切需要,被稱為能源革命的支撐技術。
壓縮空氣儲能系統具有規模大、效率高、成本低、環保等優點,被認為是最具發展潛力的大規模儲能技術之一。
壓縮空氣儲能技術概述
儲能技術可解決可再生能源大規模接入、提高常規電力系統和區域能源系統效率、安全性和經濟性的迫切需要,被稱為能源革命的支撐技術。截至2016 年底,我國儲能裝機為24.2GW,約占全國電力總裝機的1.5%,遠低于世界2.7% 的平均水平。預計到2050 年,我國儲能裝機將達到200GW 以上,占發電總量的10%~15%, 市場需求巨大而迫切。壓縮空氣儲能系統具有規模大、效率高、成本低、環保等優點, 被認為是最具發展潛力的大規模儲能技術之一。
目前,全球已有兩座大規模壓縮空氣儲能電站投入了商業運行。
第一座是1978 年投入商業運行的德國Huntorf 電站(圖1)。機組采用兩級壓縮兩級膨脹,壓縮機功率為60MW,膨脹機功率為290MW(2007 年擴容至321MW),壓縮空氣存儲在地下600 米的廢棄礦洞中,總容積達3.1×105m3,壓力最高可達100bar。機組可連續充氣8 小時,連續發電2 小時。機組從靜止到滿負荷需要11 分鐘,冷態啟動至滿負荷約需6 分鐘,電站效率為42%。
第二座是于1991 年投入商業運行的美國McIntosh 電站(圖2)。其儲氣洞穴在地下450 米,總容積達5.6×105m3,儲氣壓力約為75bar。該電站壓縮機功率為50MW,膨脹機功率為110MW,可實現連續41 小時充氣和26 小時發電,機組從啟動到滿負荷約需9 分鐘, 系統效率為54%。另外,日本于2001 年在北海道空知郡投運了上砂川町2MW 壓縮空氣儲能示范項目。其余國家如瑞士、法國、英國、意大利、俄羅斯、以色列、芬蘭、南非和韓國等國家也在積極開發壓縮空氣儲能電站。
以上商業電站均屬于傳統壓縮空氣儲能技術(圖3)。在用電低谷,壓縮機將空氣壓縮并存于儲氣室中,使電能轉化為空氣的內能存儲起來;在用電高峰,高壓空氣從儲氣室釋放,進入燃燒室同燃料一起燃燒,然后驅動透平發電。
但傳統壓縮空氣儲能系統存在三個技術瓶頸,一是依賴天然氣等化石燃料提供熱源,不適合我國這類“缺油少氣”的國家;二是需要特殊地理條件建造大型儲氣室,如高氣密性的巖石洞穴、鹽洞、廢棄礦井等;三是系統效率較低(分別為42%、54%),需進一步提高。
新型壓縮空氣儲能技術研發進展
為解決傳統壓縮空氣儲能的技術瓶頸問題,近年來,國內外學者開展了新型壓縮空氣儲能技術研發工作,包括絕熱壓縮空氣儲能、蓄熱式壓縮空氣儲能及等溫壓縮空氣儲能(不使用燃料)、液態空氣儲能(不使用大型儲氣室)、超臨界壓縮空氣儲能(不使用大型儲氣室、不使用燃料)等。
絕熱式壓縮空氣儲能
絕熱式壓縮空氣儲能技術通過儲熱裝置回收壓縮熱并儲存,使壓縮及膨脹過程近似于絕熱過程,不必燃燒化石燃料,并且能保持較高的儲能密度及效率。其工作原理為:儲能時,通過壓縮機將空氣壓縮至高溫高壓狀態后,通過儲熱系統將壓縮熱儲存,空氣降溫并儲存在儲罐中。釋能時,將高壓空氣釋放,利用儲存的壓縮熱使空氣升溫,由高溫高壓空氣推動膨脹機做功發電。
該系統回收了壓縮熱并且再利用,使系統效率得到了較大提高,同時去除了燃燒室,實現了零排放。但由于壓縮機級間不回收熱量、冷卻空氣,故壓縮過程能耗較高。由于壓縮機出口的空氣溫度高,對設備材料要求高。
德國RWE Power 公司于2010 年啟動ADELE 項目, 設計儲熱溫度600 ℃, 設計儲氣壓力100bar,理論設計效率可達70%,該項目一直處于論證階段。
蓄熱式壓縮空氣儲能
蓄熱式壓縮空氣儲能又被稱作先進絕熱壓縮空氣儲能,其原理同絕熱壓縮空氣儲能類似,區別在于該系統在壓縮過程級間換熱及儲熱,絕熱壓縮空氣儲能在全部壓縮過程結束后儲熱。相較于絕熱壓縮空氣儲能,蓄熱式壓縮空氣儲能系統的儲熱溫度及儲能密度較低,但其壓縮機耗能減小,且對于壓縮機材料要求不高。該系統缺點在于增加了多級換熱及儲熱,系統初投資有所增加。
中國科學院工程熱物理研究所于2013 年在廊坊建成國內首套1.5MW 蓄熱式壓縮空氣儲能示范系統,于2016 年在貴州畢節建成國際首套10MW 示范系統,效率達60.2%,是全球目前效率最高的壓縮空氣儲能系統。
等溫壓縮空氣儲能
等溫壓縮空氣儲能系統是指通過一定措施(如活塞、噴淋、底部注氣等),通過比熱容大的液體(水或者油)提供近似恒定的溫度環境,增大氣液接觸面積和接觸時間,使空氣在壓縮和膨脹過程中無限接近于等溫過程,將熱損失降到最低,從而提高系統效率,其理論效率可達70% 以上。此外,該技術不必提供外部熱源,還可以減少部件的熱應力。但該系統也存在一定問題,在壓縮過程中,部分空氣溶解于水中而沒有存儲到儲氣罐,造成部分能量損失。
美國SustainX 公司于2013 年在美國New Hampshire 州建成1.5MW/1.5MWh 的示范系統。美國General Compression 公司于2012 年在美國Texas 州建成2MW/500MWh 示范系統。目前,上述兩家公司已經合并成立GCX 能源公司,繼續開展壓縮空氣儲能技術開發工作。美國的Lightsail 公司也開展等溫壓縮空氣儲能研發,目前正在加拿大Nova Scotia 省建設500kW/3MWh 示范項目。
液態空氣儲能
液態壓縮空氣儲能是將電能轉化為液態空氣的內能以實現能量存儲的技術。儲能時,利用富余電能驅動電動機將空氣壓縮、冷卻、液化后注入低溫儲罐儲存;發電時,液態空氣從儲罐中引出,加壓后送入蓄冷裝置將冷量儲存并使空氣升溫氣化,高壓氣態空氣通過換熱器進一步升溫后進入膨脹機做功發電。由于液態空氣的密度遠大于氣態空氣,其儲氣室容積可減少約20 倍,大幅壓縮系統占地面積,綜合成本有下降的空間。但由于系統增加液化冷卻和氣化加熱過程,增加了額外損耗。
英國Highview 儲能公司于2010 年建成350kW/2.5MWh 液態空氣儲能示范系統并成功投運,目前正在開展5MW/15MWh 示范電站建設。中科院工程熱物理所于2013 年在廊坊建成1.5MW 液態空氣儲能示范系統。其余機構如中科院理化技術研究所、智能電網研究院、東南大學、昆明理工大學等也開展了相關理論及實驗研究。
責任編輯:繼電保護
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網
-
新基建助推 數據中心建設將迎爆發期
2020-06-16數據中心,能源互聯網,電力新基建 -
泛在電力物聯網建設下看電網企業數據變現之路
2019-11-12泛在電力物聯網 -
泛在電力物聯網建設典型實踐案例
2019-10-15泛在電力物聯網案例
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長期助力儲能行業發展
-
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網 -
5G新基建助力智能電網發展
2020-06-125G,智能電網,配電網 -
從智能電網到智能城市