鋰離子電池的”前半生”
鋰離子電池在現代生活中無處不在,在電動汽車市場中得到普遍采用,但電動車輛應用需要恒定,可靠的電池。然而,即使在相同的循環協議(形成過程)下,電池性能的不規律性也使得鋰離子電池的可用循環壽命難以預測。電池的封閉式設計使理解電池的電化學和物理特性在運行過程中如何以及為何發生變化變得異常困難。這種不完全的理解使得難以設計考慮這種性質演變的電池系統。目前理解鋰離子電池變化主要集中在識別電池的單個特征并描述其在循環壽命期間如何變化的特征。這雖然可以提供電池性能演變的有用信息,但仍然難以解決電容變化的根本原因問題。此外,也無法解決與電池可靠性相關的重要問題:是否可以提前預測電池何時出現故障。
美國普林斯頓普林斯頓大學Daniel A. Steingart教授發現在發現“形成”和“穩定狀態”之間存在一個重要的時期,被稱之為“磨合期”(Break-in period)。磨合期通常在電池的幾個循環后形成,不同于電池在穩定狀態下的表現,理解和控制磨合條件可以決定電池的未來表現。因此作者使用電化學阻抗譜(EIS)研究電化學電阻的變化,以及超聲波飛行時間(ToF)分析(能夠通過測量超聲波通過電池的幅度和飛行時間的變化來探測材料性質的變化)研究電池物理特性的變化,這兩種非破壞性的非侵入式技術能夠實時監控電池物理特性的變化。
圖1. (A)初始放電態(SoC)的電化學阻抗圖,(B)放電結束態(EoD)的電化學阻抗圖,(C)從同一電池同時獲得的初始放電態的超聲波傳輸信號,(D)放電結束態的超聲波傳播信號。
通過不同循環、不同測試狀態下電化學阻抗和超聲波測試結果對比可以觀察到相同的趨勢,其中EIS數據的半圓減小并且超聲信號的ToF隨著循環的增加而增加。這表明電池的電化學響應和超聲信號的時間變化是可以耦合的。
圖2.通過RCT和ToF位移的變化確認磨合期。(A)在LCO軟包電池100個循環期間的電荷轉移電阻,(B)每個循環時ToF位移(基于未循環初始放電態計算)
在放電結束時測量的RCT(EoD)始終高于放電開始時的RCT(SoD),表明LCO的電荷轉移電阻隨著鋰化的增加而增加。有趣的是,在SoD和EoD測量的RCT在最初的12個循環期間都降低了~40%,雙電層電容在磨合期間迅速增加,隨后趨于平穩,表明LCO的有效反應表面積增加。同樣,ToF位移也在前12次循環逐漸增加,表明石墨負極體積的膨脹造成電池的膨脹,并影響有效模量。而RCT的變化和ToF位移之間是否存在耦合現象?
圖3. RCT,ToF位移和循環SOC窗口的耦合行為。(A, B)LCO軟包電池在不同截止電壓之間循環的超聲信號ToF位移,(C, D) 同一電池電荷轉移內阻的改變
隨后作者通過改變充放電電壓區間來進一步驗證ToF和RCT之間存在的耦合關系。結果表明隨著電壓/SOC窗口的改變(例如隨著石墨體積循環變化的增加),ToF和電荷轉移電阻中存在明顯的趨勢,即在循環期間較大的SOC對應于ToF的增加和電荷轉移電阻的減小。為了進一步闡明這些趨勢,作何繪制了第12次循環(磨合期結束)ToF位移和電荷轉移內阻變化(如圖4)。清楚地表明,同一循環內石墨體積膨脹的增加直接與ToF偏移的增加和電荷轉移電阻的減小相關。此外也說明,在一個循環內石墨體積膨脹的增加將增加可能導致ToF變化的副反應。
圖4. 循環內石墨膨脹與RCT和ToF偏移相關聯。(A)第12次循環時超聲信號的ToF位移與石墨膨脹程度之間的關系,(B)相同電池在第12次循環時電荷轉移電阻的變化。
圖5.電解質潤濕過程的示意圖。(A)未循環的電池,(B)第30次循環的電池。在循環期間,石墨電極的膨脹取代了電池內的電解液增加內部應力,導致電解液潤濕LCO正極中先前難以潤濕的區域。
以上實驗結果表明石墨負極的膨脹會影響LCO正極電荷轉移內阻的減小,為了解釋這一現象,作者提出了石墨負極的膨脹促使電解液潤濕LCO正極中先前難以潤濕的區域。隨后通過電極孔徑研究表明LCO存在大量難以完全潤濕的小孔,且循環后的電極表面以及LCO顆粒也未發生破裂表明電極沒有新的表面積生成,也從側面說明潤濕假設的成立。最后作者認為磨合期現象反應的就是正負極之間的非化學串擾,正極和負極的性能仍然是相互依賴的。
LCO/石墨軟包電池的磨合期對應于電化學阻抗和超聲信號的突然變化的前12個循環,隨后逐漸穩定到更恒定的值。電池阻抗的主要變化是電荷轉移電阻的降低,歸因于LCO活性表面積的增加。對于超聲波測量,磨合期對應于超聲波信號穿過電池所需的ToF的增加,歸因于石墨負極的膨脹。而磨合期這些變化都取決于電池的循環期間的電壓窗口。
TOF: ToF測距方法屬于雙向測距技術,它主要利用信號在兩個異步收發機(Transceiver)(或被反射面)之間往返的飛行時間來測量節點間的距離。
責任編輯:繼電保護
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網
-
新基建助推 數據中心建設將迎爆發期
2020-06-16數據中心,能源互聯網,電力新基建 -
泛在電力物聯網建設下看電網企業數據變現之路
2019-11-12泛在電力物聯網 -
泛在電力物聯網建設典型實踐案例
2019-10-15泛在電力物聯網案例
-
權威發布 | 新能源汽車產業頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業,設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長期助力儲能行業發展
-
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統
2020-06-16綜合能源服務,新能源消納,能源互聯網 -
5G新基建助力智能電網發展
2020-06-125G,智能電網,配電網 -
從智能電網到智能城市